Volume 4
Articles

Challenges for India in Agriculture and the Pivotal Role of R&D In Meeting These

Deepak Pental
Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India

Published 2023-09-02

Keywords

  • Low-input, High-output Agriculture, Groundwater Over-exploitation, Conservation Agriculture, Crop Yields, Plant Breeding, Genetic Engineering

How to Cite

Pental, D. (2023). Challenges for India in Agriculture and the Pivotal Role of R&D In Meeting These. DIALOGUE: Science, Scientists and Society, 4(.), 1–44. Retrieved from https://dialogue.ias.ac.in/index.php/dialogue/article/view/26

Abstract

Agriculture globally must meet the challenge of feeding a growing population while minimizing its environmental impacts. For India, there is an additional challenge of making farming profitable for small landholders. I assess the possibility of achieving low-input, high-output agriculture for India; low-input both in terms of natural resources and monetary inputs. Input, output analysis shows that bringing about low-input, high-output agriculture would require curbing the over-exploitation of groundwater resources, soil analysis-based use of fertilizers, conservation agriculture, crop diversification, and doubling of the crop and livestock productivity. Crops need to be protected from pests and pathogens, and abiotic stresses; this will require significantly increased investments in public-funded R&D. Research competency will have to be improved for an effective blending of conventional breeding with the New Plant Breeding Technologies – Marker Assisted Breeding, Genetic Engineering, and Gene Editing. Open-source R&D, collaborations within India and beyond the country with CG institutes and advanced laboratories will improve competency, allow bundling of desirable traits in locally adapted varieties/ hybrids, keep the cost of seed low for the small landholders in South Asia and Africa, and overall help in achieving the United Nations SDG 2 of ‘Zero Hunger’.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Godfray H. C. J., Beddington J. R., Crute I. R., Haddad L., Lawrence D., Muir J. F. and Pretty S.
  2. et al. 2010 Food security, the challenge of feeding 9 billion people. Science 327, 812-818.
  3. Foley J. A., Ramankutty N., Brauman K. A., Cassidy E. S., Gerber J. S., Johnston M. et al. 2011 Solutions for a cultivated planet. Nature 478, 337-342.
  4. Godfray H. C. J. and Garnett T. 2014 Food security and sustainable intensification. Philos.
  5. Trans. R. Soc. B: Biol. Sci. 369, 2012.0273.
  6. Rockstrom J., Williams J., Baily G., Noble A., Matthews N., Gordon L. et al. 2017 Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4-17.
  7. Doebley J. F., Gaut B. S. and Smith B. D. 2006 The molecular genetics of crop domestication.
  8. Cell127, 1309-1321.
  9. World Population Prospects 2019. United Nations Department of Economic and Social Affairs, Population Division. Available at population.un.org/ wpp/ 7. Vollset S. E., Goren E., Yuan C-W., Cao J., Smith A. E., Hsiao T. et al. 2020 Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017-2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 396, 1285-1306.
  10. Fogel R. W. 2004 The Escape from Hunger and Premature Death 1700-2100: Europe, America, and the Third World. Cambridge University Press, Cambridge, UK.
  11. Smil V. 2004 Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production. MIT Press, Boston, USA.
  12. Erisman J. W., Sutton M. A., Galloway J., Klimont Z. and Winiwarter W. 2008 How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639.
  13. Kingsbury N. 2009 Hybrid: The History & Science of Plant Breeding. University of Chicago Press, Chicago, USA.
  14. Global Hunger Index 2019. Available at www.globalhungerindex.org 13. Economic Survey 2020-2021 – Statistical Appendix. Ministry of Finance, Government of India.
  15. Available at www.indiabudget.gov.in/ economicsurvey/ 14. Shah T. 2009 Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005.
  16. Rodell M., Velicogna I. and Famiglietti J. S. 2009 Satellite based estimates of ground water depletion in India. Nature 460, 999-1002.
  17. Central Ground Water Board Annual Report 2018-19. Ground Water Authority of India, Ministry of Jal Shakti, Government of India. Available at http:// cgwb.gov.in/ Ann-Reports.html 17. Suhag R. 2016 Overview of Groundwater in India. PRS Legislative Research, New Delhi, India.
  18. Asoka A., Gleeson T., Wada Y. and Mishra V. 2017 Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geosciences 10, 109–117.
  19. Umetsu N. and Shirai Y. 2020 Development of novel pesticides in the 21st century. J. Pesticide Sci. 45, 54-74.
  20. Oerke E. C. 2006 Crop losses to pests. J. Agri. Sci. 144, 31-43.
  21. Savary S., Willocquet L., Pethybridge S. J., Esker P., McRoberts N. and Nelson A. 2019 The global burden of pathogens and pests on major food crops. Nature Ecol. Evo. 3, 430-439.
  22. Deutsch C. A., Tewksbury J. T., Tigchelaar M., Battisti D. S., Merrill S.C., Huey R. B. and Naylor R. I. 2018 Increase in crop losses to insect pests in a warming climate. Science 361, 916-919.23. Velasquez A. G., Castroverde C. D. M. and He S. Y. 2018 Plant - pathogen warfare under changing climate conditions. Curr. Biol. 28, 619-634.
  23. Grover A. and Pental D. 2003 Breeding objectives and requirements for producing transgenics for major field crops of India. Curr. Sci. 84, 310-320.
  24. Gharde Y., Singh P. K., Dubey R. P. and Gupta P. K. 2018 Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection 107, 12-18.
  25. Arabidopsis genome initiative. 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
  26. Giani A. M., Gallo G.R., Gianfranceschi L. and Formenti G. 2020 Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotech.
  27. J. 18, 9-19.
  28. Khan A.W., Garg V., Roorkiwal M., Golicz A. A., Edwards D. and Varshney R. K. 2020 Superpangenome by integrating the wild side of a species for accelerated crop improvement. Trends in Plant Sci. 25, 148-158.
  29. Moose S. P. and Mumm R. H. 2008 Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147, 969-977.
  30. Bevan M. W., Uauy C., Wulff B. B. H., Zhou J., Krasileva K. and Clark M. D. 2017 Genomic innovation for crop improvement. Nature 543, 346-354.
  31. Varshney R. K., Sinha P., Singh V. K., Kumar A., Zhang Q. and Bennetzen J. L. 2020 5Gs for crop improvement. Curr. Opin. Plant Biol. 56, 190-196.
  32. Sussex I. 2008 The scientific roots of modern plant biotechnology. Plant Cell 20, 1189-1198.
  33. ISAAA (International Service for the Acquisition of Agri-biotech Applications). 2019 Accomplishment Report. Available at www.isaaa.org 34. Qaim M. 2020 Role of new plant breeding technologies for food securities and sustainable agricultural development. App. Eco. Perspectives and Policy 42,129-150.
  34. Bailey-Serres J., Parker J., Ainsworth E. A., Oldroyd G. E. D. and Schroeder J. I. 2019 Genetic strategies for improving crop yields. Nature 575, 109-118.
  35. Pixley K. V., Falck-Zepeda J. B., Giller K., Glenna L. L., Gould F., Mallory-Smith C. A. et al. 2019 Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit? Ann. Rev. Phytopathology 57, 165-188.
  36. Chen K., Wang Y., Zhang R., Zhang H. and Gao C. 2019 CRISPR/ Cas genome editing and precision plant breeding in agriculture. Ann. Rev. Plant Biol. 70, 667-697.
  37. Wada N., Ueta R., Osakabe Y., Osakabe K. 2020 Precision Genome editing in plants: State-oftheart in CRISPR/ Cas 9-basedgenome sequencing. BMC Plant Biol. 20, 334.39. Bonny S. 2017 Corporate concentration and technological change in the global seed industry.
  38. Sustainability 9, 1632.
  39. Deconinck K. 2020 Concentration in seed and biotech markets: Extent, causes, and impacts.
  40. Ann. Rev. Resource Econ. 12, 124-147.
  41. Nishimoto R. 2019 Global trends in crop protection industry. J. Pesticide Sci. 44, 141-147.
  42. Borlaug N. E. 2000 Ending world hunger: The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol. 124, 487-494.
  43. Roberts R. J. 2018 The Noble Laureates’ campaign supporting GMOs. J. Innovation and Knowledge 3, 61-65.
  44. Pental D. 2019 When scientists turn against science: Exceptionally flawed analysis of plant breeding technologies. Curr. Sci. 117, 932-939.
  45. NAAS (The National Academy of Agricultural Sciences). 2019 Zero Budget Natural Farming A Myth or Reality? Policy paper no. 90. Available at http:// naasindia.org 46. de Ponti T., Rizk B. and van Ittersum M. K. 2012 The crop yield gap between organic and conventional agriculture. Agricultural Systems 108, 1-9.
  46. Seufert V., Ramankutty N. and Foley J. A. 2012 Comparing the yields of organic and
  47. conventional agriculture. Nature 485, 229-234.
  48. Willer H. and Lernoud J. 2019 The World of Organic Agriculture Statistics and Emerging
  49. Trends. 2019. FIBL and IFOAM. Available at www.organic-world.net/ yearbook/ yearbook-
  50. html
  51. Knapp S. and van der Heijden M. G. A. 2018 A global meta-analysis of yield stability in organic
  52. and conventional agriculture. Nature Comm. 9, 3632.
  53. Shyamsunder P., Springer N. P., Tallis H., Polasky S., Jat M. L., Sidhu H. S., et al. 2019 Fields on
  54. fire: Alternatives to crop residue burning in India. Science 365, 536-538.
  55. Jat M. L., Chakraborty D., Ladha J. K., Rana D. S., Gathala M. K., McDonald A. and Gerard B.
  56. Conservation agriculture for sustainable intensification in South Asia. Nature
  57. Sustainability 3, 336-343.
  58. Sukumar A. M. 2019 Midnight’s Machines: A Political History of Technology in India Penguin/
  59. Viking, Gurgaon, India.
  60. ASTI Agricultural R&D Indicators Factsheet, India 2016. ASTI-IFPRI, Washington DC, USA.
  61. Available at https:// www.asti.cgiar.org
  62. Research and Development Statistics 2019–20, Department of Science & Technology,
  63. Government of India. Available at www.nstmis-dst.org
  64. Cohen J. 2019a China’s CRISPR revolution. Science 365, 420-421.56. Cohen J. 2019b Fields of dream: China bets big on genome editing of crops. Science 365, 423-
  65. El-Mounadi K., Morales-Floriano M. L. and Garcia-Ruiz H. 2020 Principles, applications, and
  66. biosafety of plant genome editing using CRISPR-Cas9. Front. Plant Sci. 11, 56. doi:10.3389/
  67. fpls.2020.00056
  68. Hardin G. 1968 “The tragedy of the commons". Science 162, 1243-1248.
  69. Corvalho F. P. 2017 Pesticides, environment, and food safety. Food and Energy Security 6, 48-
  70. Hickey L. T., Hafeez A. N., Robinson H., Jackson S. A., Leal Bertioli S. G. M., Tester M. et al.
  71. Breeding crops to feed 10 billion. Nature Biotech. 37, 744-754.
  72. National Education Policy 2020, Ministry of Education, Government of India. Available at
  73. https:// www.education.gov.in/ en
  74. Alston J. M., Chan-Kang C., Marra M. C., Pardey P. G. and Wyatt T. J. 2000 A meta-analysis of
  75. rates of return to agricultural R&D: ex pede herculem? International Food Policy Research
  76. Institute (IFPRI), Washington DC, USA.
  77. Phogat B. S., Kumar S., Kumari J., Kumar N., Pandey A. C., Singh T. P. et al. 2021
  78. Chracterization of wheat germplasm conserved in the Indian National Genebank and
  79. establishment of a composite core collection. Crop Science 61, 604-611.
  80. Kumar S., Archak S., Tyagi R. K., Kumari J., Vikas V. K., JacobS. R. et al. 2016 Evaluation of
  81. ,460 wheat accessions conserved in the IndianNational Genebank to identify new sources of
  82. resistance to rust and spot blotchdiseases. PLoS ONE11, e01167702. https:// doi.org/ 10.1371/
  83. journal.pone.0175610
  84. NAAS (The National Academy of Agricultural Sciences). 2020 Regulatory Framework for
  85. Genome Edited Plants: Accelerating the Pace and Precision of Plant Breeding. Policy brief no.
  86. Available at http:// naasindia.org
  87. Heller M. A. 2008 The Gridlock Economy: How Too Much Ownership Wrecks Markets, Stops
  88. Innovation, and Costs Lives. Basic Books, New York, USA.